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ABSTRACT 

This paper first extends the intraday density function of Guo and Chang (2020) to a 

multi-day one for stocks in markets with daily price limits. Next, we adopt the fast 

Fourier transform (FFT) to derive accurate and efficient formulae for American 

options in the framework of Kim (1990) and Chang et al. (2016) and further employ 

the three-point Richardson extrapolation to accelerate the computation. Finally, the 

accuracy of our proposed methods is verified by simulations. We also note that more 

restrictive daily price limits could force options to be exercised earlier. 
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I. Introduction 

This paper considers the problem of pricing American options on stocks in markets 

with daily price limits. We follow Black and Scholes (1973) to derive American 

option pricing formulae for non-dividend-paying stocks but extend the framework to 

markets with daily price limits. As per Guo and Chang’s (2020) assertion, knowledge 

of pricing options in markets with daily price limits is quite limited, and our 

understanding of price limit mechanisms primarily comes from empirical studies. This 

illustrates the importance and contribution of this paper: it derives solutions for these 

types of pricing situations especially that Kim and Park (2010) point out that 23 out of 

43 of the most important world markets use daily price limits. 

    We believe that the discussion of the impacts of early exercise on options could 

be further generalized to the bounded geometric Brownian motion. We extend the 

method of Kim (1990) and Chang et al. (2016) by studying daily price limits. Such an 

extension is important because most stock markets around the world use price limits. 

Price limits are believed to mitigate excessive price volatility, lower panic behavior, 

and/or minimize price manipulation.1 Despite their significant presence, however, 

impacts of these price limit mechanisms on options are not well understood, and there 

remain many unanswered questions about how to make early-exercise decisions 

regarding market regulation because of the lack of appropriate study tools. In this 

 
1 See Kim and Rhee (1997), Kim (2001), Kim and Yang (2004), and Kim and Park 

(2010). 
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paper, we first extend the intraday density function of Guo and Chang (2020) to a 

multi-day density function. Then, we use the framework of Kim (1990) and Chang et 

al. (2016) to value American options on stocks in markets with daily price limits. We 

derive an efficient formula for the early exercise premium and employ the three-point 

Richardson extrapolation to accelerate the computation. In addition, we also explore 

the influence of price limits and interest rates on the decision of early exercise. 

The rest of this paper is organized as follows: in Section 2, the model and 

methodology are briefly described. Section 3 provides a comparison of our proposed 

solution with simulations and illustrates our findings. Section 4 presents the 

conclusion. 

 

II. Model and Methodology 

2.1 Framework of Kim (1990) and Chang et al. (2016) 

For American put options, it can be optimal to exercise at any time prior to expiration, 

even in the absence of dividends. So, in this case, we are generally forced to a 

numerical solution; this is a well-known backward iteration. The Richardson 

extrapolation technique is one possible solution to obtain an efficient scheme for 

American options on a stock without dividends. For example, according to Kim (1990) 

and Chang et al. (2016): 
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𝑃𝐴(𝑆𝑡, 𝑡) 

= 𝑃𝐸(𝑆𝑡, 𝑡)+𝑟𝐾 ∫ 𝑒−𝑟(𝑠−𝑡) {∫ 𝜙(𝑆𝑡, 𝑆𝑠, 𝑠 − 𝑡)𝑑𝑆𝑠
𝑆𝑠
∗

0
}

𝑇

𝑡
𝑑𝑠 for 𝑡 ≥ 0,   (1) 

where 𝑃𝐴(∙) denotes the time 𝑡 value of an American put on the underlying stock 

price 𝑆𝑡  with the strike price 𝐾  and the maturity 𝑇 , 𝑃𝐸(∙)  denotes the 

corresponding value of its European put, 𝑟 denotes the risk-free interest rate, and 

𝜙(∙) denotes the density function of the future stock price 𝑆𝑠 at future time 𝑠 given 

the time 𝑡 filtration. The critical exercise boundary solves the following integral 

equation for 𝑆𝑡
∗: 

𝐾 − 𝑆𝑡
∗ 

= 𝑃𝐸(𝑆𝑡
∗, 𝑡) + 𝑟𝐾∫ 𝑒−𝑟(𝑠−𝑡) {∫ 𝜙(𝑆𝑡

∗, 𝑆𝑠, 𝑠 − 𝑡)𝑑𝑆𝑠

𝑆𝑠
∗

0

}
𝑇

𝑡

𝑑𝑠 

for 𝑇 ≥ 𝑡 ≥ 0.                          (2) 

Once 𝑆𝑡
∗ is obtained, the price of the American put option can be calculated based on 

Eq. (1). Solving for 𝑆𝑡
∗ needs to be conducted recursively. We need to solve for 𝑆𝑠

∗ 

for 𝑠 ∈ (𝑡, 𝑇]. To rapidly evaluate American options without approximating the 

whole early exercise boundary between 𝑡 and 𝑇, we follow Huang et al. (1996) and 

Chang et al. (2016) to utilize a three-point Richardson extrapolation to accelerate the 

recursive integration method. The Richardson extrapolation scheme gains efficiency 

without sacrificing much accuracy. Our proposed model is implemented in a similar 

way. Assuming that the option can be respectively exercised only once, twice, or three 
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times between 𝑡 and 𝑇, and denoting the corresponding option prices as 𝑃1, 𝑃2, and 

𝑃3, the three-point Richardson extrapolation for the American put option could be 

expressed as follows: 

𝑃̂𝐴 =
1

2
(𝑃1 − 8𝑃2 + 9𝑃3)                      (3) 

where 𝑃̂𝐴 denotes the approximated American put option value. Our approach may 

not be limited to the GBM price process, and 𝑆𝑡  could follow a very general 

continuous-time stochastic process whose transition density is known. 

 

2.2 Intraday characteristic function 

We next extend this new efficient scheme to pricing European options on stocks 

which pay discrete dividends in markets with daily price limits. We first extend the 

intraday density function of Guo and Chang (2020) to a multi-day density function for 

stocks in markets with daily price limits. Consider an example of a European option 

with maturity T  on stocks with daily price limits defined as follows: (A.1) price 

limits are determined by stock prices at date 𝑡𝑖, where 𝑖 = 0,⋯ ,𝑁 and 𝑡0 = 0 <

𝑡1 < 𝑡2 < 𝑡3 < ⋯ < 𝑡𝑁 = 𝑇. The time interval between 𝑡𝑖 and 𝑡𝑖+1 is often one day. 

(A.2) In each time interval, the pricing process is a function of a geometric Brownian 

motion until price limits are reached. (A.3) After reaching a boundary, the stock price 

may remain on the boundary for a time or rebound away from the boundary. Hence, as 
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Ban et al. (2000) claimed, the least complicated natural process in each time interval 

is given by the following stochastic differential equation: 

{

𝑑𝑆𝑡 = 𝜎𝑆𝑡𝐼(𝑎,𝑏)(𝑆𝑡)𝑑𝑊𝑡 + 𝜃𝑆𝑡𝐼(𝑎,𝑏)(𝑆𝑡)𝑑𝑡 + 𝛿1𝑑∅𝑡 − 𝛿2𝑑𝜑𝑡
𝐼{𝑎}𝑑𝑡 = 𝜌1𝑑∅𝑡
𝐼{𝑏}𝑑𝑡 = 𝜌2𝑑𝜑𝑡,

        (4) 

where 𝑊𝑡 denotes a standard Brownian motion, 𝜃 denotes the drift term, and 𝜙 

and 𝜑 are, respectively, local times at 𝑎 (the lower bound) and 𝑏 (the upper bound) 

under the physical measure. 𝜌 is the viscosity of the boundary with 𝜌 ≥ 0; larger 

values of 𝜌 could inhibit the change in the stock price. 𝛿(≥ 0) denotes the elasticity 

of the boundary; as 𝛿 increases, the stock price rebounds more violently. This is Ban 

et al.’s (2000) intraday model of daily price limit markets. With the vanishing 

transaction cost technique, Ban et al. (2000) showed that the transaction cost vanishes 

sufficiently fast and the hedging error vanishes as the size of the discretization interval 

shrinks to zero. Therefore, they derived the following intraday partial differential 

equation (PDE) for the value of the contingent claim C with maturity 𝑇 under the 

price-limit process described by Eq. (16): 

{
 
 

 
 
𝜕𝐶

𝜕𝑡
(𝑆, 𝑡) +

1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆2
(𝑆, 𝑡) + 𝑟𝑆

𝜕𝐶

𝜕𝑆
(𝑆, 𝑡) − 𝑟𝐶(𝑆, 𝑡) = 0

𝐶(𝑆, 𝑇) = 𝑌(𝑆)
𝜕𝐶

𝜕𝑡
(𝑎, 𝑡) + 𝑟𝑎

𝜕𝐶

𝜕𝑆
(𝑎, 𝑡) − 𝑟𝐶(𝑎, 𝑡) = 0

𝜕𝐶

𝜕𝑡
(𝑏, 𝑡) + 𝑟𝑏

𝜕𝐶

𝜕𝑆
(𝑏, 𝑡) − 𝑟𝐶(𝑏, 𝑡) = 0

         (5) 

where (𝑆, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇], r denotes the risk-free rate, and 𝑌(𝑆) is the value of 

the contingent claim expired at the end of the day. Guo and Chang (2020) show that 
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the intraday transition density 𝑝(𝑡, 𝑍0, 𝑍𝑡) with 𝐿 < 𝑍𝑡 < 𝑈 is given by 

𝑝(𝑡, 𝑥, 𝑦) 

=
2

𝑈−𝐿
𝑒𝑥𝑝 {

𝜇(𝑦−𝑥)

𝜎2
−

𝜇2𝑡

2𝜎2
}∑ 𝑒𝑥𝑝 {−

𝑚2𝜋2𝜎2𝑡

2(𝑈−𝐿)2
}∞

𝑚=1 × 𝑠𝑖𝑛 (
𝑚𝜋(𝑥−𝐿)

𝑈−𝐿
) 𝑠𝑖𝑛 (

𝑚𝜋(𝑦−𝐿)

𝑈−𝐿
) (6) 

where 𝑡 > 0, 𝑍𝑡=ln 𝑆𝑡 , 𝑥 = 𝑍0 , 𝑦 = 𝑍𝑡 , 𝐿 {= 𝑙𝑛(𝑎) = 𝑙𝑛 [(1 − 𝛼)𝑆0]}  < 𝑥 , 𝑦 <

𝑈 {= ln(𝑏) = ln [(1 + 𝛽)𝑆0]} , and 𝜇=𝜗 -𝜎2/2 . The drift parameter 𝜗  can be 

determined with the requirement of retaining the Martingale property.2 In addition,  

𝑝(𝑡, 𝑥, {𝐿}) = Π𝑥(𝜏𝐿 < 𝜏𝑈) − ∫ Π𝑦(𝜏𝐿 < 𝜏𝑈)𝑝(𝑡, 𝑥, 𝑦)𝑑𝑦
𝑈

𝐿
,         (7) 

and  

𝑝(𝑡, 𝑥, {𝑈}) = Π𝑥(𝜏𝑈 < 𝜏𝐿) − ∫ Π𝑦(𝜏𝑈 < 𝜏𝐿)𝑝(𝑡, 𝑥, 𝑦)𝑑𝑦
𝑈

𝐿
,        (8) 

where 𝜏𝐿 and 𝜏𝑈 denote the stopping time at L and U, respectively. Given the initial 

position 𝑍0 = 𝑥, the expression Π𝑥(𝜏𝐿 < 𝜏𝑈) and Π𝑥(𝜏𝑈 < 𝜏𝐿) can be defined and 

given by3  

{
Π𝑥(𝜏𝐿 < 𝜏𝑈) =

1−exp(2𝜇(𝑈−𝑥) 𝜎2⁄ )

1−exp(2𝜇(𝑈−𝐿) 𝜎2⁄ )
  

Π𝑥(𝜏𝑈 < 𝜏𝐿) =
1−exp(−2𝜇(𝑥−𝐿) 𝜎2⁄ )

1−exp(−2𝜇(𝑈−𝐿) 𝜎2⁄ )
.
                       (9) 

Given the intraday transition density under the chosen measure, the intraday 

characteristic function can be further deduced. The characteristic function is defined 

by 

𝐽1(𝜙, 𝑍0, 𝑡1) ≡ 𝐸̃[𝑒𝑥𝑝(𝑖𝜙𝑍𝑡1)|𝑍0] 

 
2  The measure that meets the requirement of 𝐸̃[𝑒−𝑟𝑇𝑆𝑇|𝑆0] = 𝑆0  is called the 

risk-neutral measure (see Kou and Wang, 2004). 
3 Please refer to Bhattacharya and Waymire (1990) for details of the proof. 
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= ∫ 𝑒𝑖𝜙𝑦𝑝(𝑡1, 𝑥, 𝑦)𝑑𝑦
𝑈

𝐿
+ 𝑒𝑖𝜙𝐿𝑝(𝑡1, 𝑥, {𝐿}) + 𝑒

𝑖𝜙𝑈𝑝(𝑡1, 𝑥, {𝑈}).         (10) 

Note that 𝑝(𝑡1, 𝑥, {𝐿}) and 𝑝(𝑡1, 𝑥, {𝑈}) are constants because they depend only on 

𝜗, 𝜎, 𝛼, and 𝛽. The characteristic function of the closing price is given by 

𝐽1(𝜙, 𝑍0, 𝑡1) 

= 𝑒𝑖𝜙𝑍0{𝐶 ∑ 𝐹𝑚𝐺𝑚(𝜙)
∞
𝑚=1 + (1 − 𝛼)𝑖𝜙𝑝(𝑡1, 𝑥, {𝐿}) + (1 + 𝛽)

𝑖𝜙𝑝(𝑡1, 𝑥, {𝑈})}, (11) 

where 𝐶 =
2

𝑈−𝐿
𝑒𝑥𝑝 (

−𝜇2𝑡1

2𝜎2
) 𝑒𝑥𝑝 (

𝜇𝑙𝑛 (1−𝛼)

𝜎2
) , 𝐹𝑚 = 𝑒𝑥𝑝

−𝑚2𝜋2𝜎2𝑡1

2𝑑2
𝑠𝑖𝑛 (

−𝑚𝜋 𝑙𝑛(1−𝛼)

𝑈−𝐿
) , 

and 𝐺𝑚(𝜙) = exp(𝑖𝜙 ln(1 − 𝛼))∫ 𝑒𝑥𝑝 (
(𝑖𝜙𝜎2+𝜇)𝑦

𝜎2
)

𝑈−𝐿

0
sin (

𝑚𝜋𝑦

𝑈−𝐿
) 𝑑𝑦 . Note that 

𝐽1(𝜙, 𝑍0, 𝑡1) contains two parts, which are 𝑒𝑖𝜙𝑍0 and 

𝐻(𝜙, 𝑡1, 𝛼, 𝛽) 

= 𝐶 ∑ 𝐹𝑚𝐺𝑚(𝜙)
∞
𝑚=1 + (1 − 𝛼)𝑖𝜙𝑝(𝑡1, 𝑥, {𝐿}) + (1 + 𝛽)

𝑖𝜙𝑝(𝑡1, 𝑥, {𝑈}),  (12) 

where 𝐻(𝜙, 𝑡1, 𝛼, 𝛽) is a function of 𝜙 without 𝑍0. Therefore, under the chosen 

measure, the multiday characteristic function of the logarithm price at the end of the 

Nth day is 

𝐽𝑁(𝜙, 𝑍0, 𝑡𝑁) ≡ 𝐸̃[𝑒𝑥𝑝(𝑖𝜙𝑍𝑡𝑁)|𝑍0] = 𝑒𝑖𝜙𝑍0𝐻(𝜙, 𝑡1, 𝛼, 𝛽)
𝑁,        (13) 

where 𝑡1 is the period of one day. 

 

2.3 Pricing option using the fast Fourier transform (FFT) 

Given the characteristic function of the logarithm price, Carr and Madan (1999) show 

that the call price can be obtained numerically using the inverse transform 
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𝐶𝑇(𝑘) =
𝑒𝑥𝑝(−𝛼̂𝑘)

𝜋
∫ 𝑒−𝑖𝑣𝑘𝜓𝑇(𝑣)𝑑𝑣
∞

0
                   (14) 

for a range of positive values of 𝛼̂, where 𝑘 = 𝑙𝑜𝑔 (𝐾), and 

𝜓𝑇(𝑣) =
𝑒−𝑟𝑇𝐽𝑁+𝜂(𝑣−(𝛼̂+1)𝑖,𝑍0,𝑇)

α̂2+α̂−𝑣2+𝑖(2𝛼̂+1)𝑣
.                     (15) 

To avoid a highly oscillatory integrand in the Fourier inversion for out-of-the money 

options with very short maturities, Carr and Madan (1999) further suggest using 

𝐶𝑇(𝑘) =
1

𝑠𝑖𝑛ℎ(𝛼̂𝑘)

1

2𝜋
∫ 𝑒−𝑖𝑣𝑘𝛾𝑇(𝑣)𝑑𝑣
∞

−∞
,                 (16) 

where 𝛾𝑇(𝑣) = (𝜁𝑇(𝑣 − 𝑖𝛼̂) − 𝜁𝑇(𝑣 + 𝑖𝛼̂)) 2⁄  and  

𝜁𝑇(𝑣) = 𝑒−𝑟𝑇 (
1

1+𝑖𝑣
−
𝑒𝑟𝑇

𝑖𝑣
−
𝐽𝑁+𝜂(𝑣−𝑖,𝑍0,𝑇)

𝑣2−𝑖𝑣
).               (17) 

Hence, the approximation for 𝐶𝑇(𝑘) in Eq. (14) using the fast Fourier transform 

(FTT) is given by 

𝐶𝑇(𝑘𝑢) =
𝑒𝑥𝑝(−α̂𝑘𝑢)

𝜋
∑ 𝑒−𝑖

2𝜋

𝑀
(𝑗−1)(𝑢−1)𝑒𝑖𝑏𝑣𝑗𝜓(𝑣𝑗)

𝜉

3
[3 + (−1)𝑗 − 𝜚𝑗−1]

𝑀
𝑗=1    (18) 

where 𝑣𝑗 = 𝜉(𝑗 − 1) , 𝑘𝑢 = −𝑏 + 𝜆(𝑢 − 1)  for 𝑢 = 1,2,⋯ ,𝑀 , 𝑏 = 𝑀𝜆 2⁄ , λξ =

2𝜋 𝑀⁄ , and 𝜚𝑛 is the Kronecker delta function that is unity for 𝑛 = 0 and zero 

otherwise. The use of the FFT for calculating out-of-the-money option prices is given 

by 

𝐶𝑇(𝑘𝑢) =
1

sinh (α̂𝑘𝑢)

1

𝜋
∑ 𝑒−𝑖

2𝜋

𝑀
(𝑗−1)(𝑢−1)𝑒𝑖𝑏𝑣𝑗𝛾(𝑣𝑗)

𝜉

3
[3 + (−1)𝑗 − 𝜚𝑗−1]

𝑀
𝑗=1 .  (19) 

 

2.4 Multi-day density function 

To derive the multi-day density function, we consider the following 
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transformation 

𝑝𝑁(𝑡𝑁 , 𝑥, 𝑦) =
1

2𝜋
∫ 𝑒−𝑖𝜙𝑦𝐽𝑁(𝜙, 𝑍0, 𝑡𝑁)
∞

−∞
𝑑𝜙               (20) 

where 𝑥 = 𝑍0 and 𝑦 = 𝑍𝑡𝑁 .  

 

2.5 Early exercise premium 

For American put options, it is difficult to find an analytical solution to the boundary 

and we focus on numerical solutions. With the Richardson three-point extrapolation, 

the numerical put option value could be solved quickly as long as the boundary is 

known. Eq. (1) shows the early exercise premium (EEP) of an American put option: 

𝐸𝐸𝑃𝑡_𝑇 = 𝑟𝐾 ∫ 𝑒−𝑟(𝑠−𝑡) {∫ 𝜙(𝑆𝑡, 𝑆𝑠, 𝑠 − 𝑡)𝑑𝑆𝑠
𝑆𝑠
∗

0
}

𝑇

𝑡
𝑑𝑠 .            (21) 

Let 𝑍 = log(𝑆) , 𝑍𝑡 = log(𝑆𝑡) and 𝑘𝑠
∗ = log (𝑆𝑠

∗), Eq. (21) can be rewritten as: 

𝑟𝐾 ∫ 𝑒−𝑟(𝑠−𝑡) {∫ 𝜙𝑍(𝑍𝑡, 𝑍𝑠, 𝑠 − 𝑡)𝑑𝑍𝑠
𝑘𝑠
∗

−∞
} 𝑑𝑠

𝑇

𝑡
,               (22) 

where 𝜙𝑍(∙)  denotes the density function of 𝑍 . Eq. (13) gives the multiday 

characteristic function of the logarithm price at the end of the Nth day. 𝐽𝑁(𝑣, 𝑍𝑡) is 

𝑒𝑖𝑣𝑍𝑡𝐻𝑁, given 𝑍𝑡, so we can imply the 𝑁𝑠 days characteristic function as follows: 

                      𝐽𝑁𝑠(𝑣, 𝑍𝑡) = 𝑒
𝑖𝑣𝑍𝑡𝐻𝑁𝑠                                  (23) 

with 𝑁𝑠 = (𝑠 − 𝑡) 𝑜𝑛𝑒 𝑑𝑎𝑦 𝑡𝑖𝑚𝑒⁄ . The logarithm 𝑁𝑠 -day price density function 

could be calculated by the Fourier transformation: 

𝜙𝑍(𝑍𝑡, 𝑍𝑠, 𝑠 − 𝑡) =
1

2𝜋
∫ 𝑒−𝑖𝑣𝑍𝑠𝐽𝑁𝑠(𝑣, 𝑍𝑡, )𝑑𝑣
∞

−∞
=

1

2𝜋
∫ 𝑒−𝑖𝑣𝑍𝑠𝑒𝑖𝑣𝑍𝑡𝐻𝑁𝑠𝑑𝑣
∞

−∞
.  (24) 

Therefore, Eq. (21) can be rewritten into 

𝐸𝐸𝑃𝑡_𝑇 = 𝑟𝐾 ∫ 𝑒−𝑟(𝑠−𝑡) {∫
1

2𝜋
(∫ 𝑒−𝑖𝑣𝑍𝑠𝑒𝑖𝑣𝑍𝑡𝐻𝑁𝑠𝑑𝑣)

∞

−∞
𝑑𝑍𝑠

𝑘𝑠
∗

−∞
} 𝑑𝑠

𝑇

𝑡
.     (25) 

After setting 𝑘𝑠
∗ = 𝑘𝑡_𝑇

∗  (a constant number), 𝑍𝑠 = 𝑀, and changing the integral 

order in Eq. (25), we have: 
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𝑟𝐾 ∫
1

2𝜋
∫ 𝑒−𝑖𝑣𝑀𝑒𝑖𝑣𝑍𝑡 {∫ 𝑒−𝑟(𝑠−𝑡)𝐻𝑁𝑠𝑑𝑠

𝑇

𝑡
} 𝑑𝑣

∞

−∞
𝑑𝑀

𝑘𝑡_𝑇
∗

−∞
.           (26) 

After defining 𝐽′(𝑣) as: 

𝐽′(𝑣, 𝑡, 𝑇) ≡ 𝑒𝑖𝑣𝑍0 {∫ 𝑒−𝑟(𝑠−𝑡)𝐻𝑁𝑠𝑑𝑠
𝑇

𝑡

} 

=𝑒𝑖𝑣𝑍0
1−𝑒−𝑟(𝑇−𝑡)𝐻𝑁𝑠

𝑟−log (𝐻)
=
𝐽0(𝑣,𝑍0,𝑡0)−𝑒

−𝑟(𝑇−𝑡)𝐽𝑁𝑠(𝑣,𝑍0,𝑡𝑁𝑠)

𝑟−log(𝐻)
,            (27) 

we could simplify Eq. (26) as follow 

𝐸𝐸𝑃𝑡_𝑇(𝑘𝑡_𝑇
∗ ) = 𝑟𝐾 ∫

1

2𝜋
∫ 𝑒−𝑖𝑣𝑀𝐽′(𝑣, 𝑡, 𝑇)𝑑𝑣
∞

−∞
𝑑𝑀

𝑘𝑡_𝑇
∗

−∞
.             (28) 

It is clear that the inner integral of Eq. (28) is also a Fourier transform, which means 

there exists  𝑞′(𝑀, 𝑡, 𝑇) =
1

2𝜋
∫ 𝑒−𝑖𝑣𝑀𝐽′(𝑣, 𝑡, 𝑇)𝑑𝑣
∞

−∞
 such that  𝐽′(𝑣, 𝑡, 𝑇) =

∫ 𝑒𝑖𝑣𝑀𝑞′(𝑀, 𝑡, 𝑇)𝑑𝑀
∞

−∞
. 

Then Eq. (28) could be abbreviated as: 

 𝐸𝐸𝑃𝑡_𝑇(𝑘𝑡_𝑇
∗ ) = 𝑟𝐾 ∫ 𝑞′(𝑀, 𝑡, 𝑇)𝑑𝑀

𝑘𝑡_𝑇
∗

−∞
.                  (29) 

Finally, let 

𝐺′(𝑘𝑡_𝑇
∗ ) ≡ ∫ 𝑞′(𝑀, 𝑡, 𝑇)𝑑𝑀

𝑘𝑡_𝑇
∗

−∞
= ∫

1

2𝜋
∫  𝑒−𝑖𝑣𝑀𝐽′(𝑣, 𝑡, 𝑇)𝑑𝑣
∞

−∞
𝑑𝑀

𝑘𝑡_𝑇
∗

−∞
.    (30) 

We define  𝑔′(𝑘𝑡_𝑇
∗ ) ≡ 𝑒−𝛼𝑘𝑡_𝑇

∗
𝐺′(𝑘𝑡_𝑇

∗ )  and   𝜓′(𝑣, 𝑡, 𝑇) ≡ ∫ 𝑒𝑖𝑣𝑘𝑡_𝑇
∗
𝑔′(𝑘𝑡_𝑇

∗ )𝑑𝑘𝑡_𝑇
∗∞

−∞
. 

After applying an inverse Fourier transformation, we have 

𝐺′(𝑘𝑡_𝑇
∗ ) =

𝑒
𝛼𝑘𝑡_𝑇
∗

2𝜋
∫ 𝑒−𝑖𝑣𝑘𝑡_𝑇

∗
𝜓′(𝑣, 𝑡, 𝑇)𝑑𝑣

∞

−∞
.                 (31) 

After changing the integral order, we have  

𝜓′(𝑣, 𝑡, 𝑇) 

= ∫ 𝑒𝑖𝑣𝑘𝑡_𝑇
∗
∫ 𝑒−𝛼𝑘𝑡_𝑇

∗
𝑞′(𝑀, 𝑡, 𝑇)𝑑𝑀

𝑘𝑡_𝑇
∗

−∞

𝑑𝑘𝑡_𝑇
∗

∞

−∞

 

= ∫ ∫ 𝑒(𝑖𝑣−𝛼)𝑘𝑡_𝑇
∗
𝑑𝑘𝑡𝑇

∗
∞

𝑀

𝑞′(𝑀,𝑡,𝑇)𝑑𝑀
∞

−∞

 

= ∫
𝑒𝑖(𝑣+𝑖𝛼)𝑀

𝛼 − 𝑖𝑣
𝑞′(𝑀, 𝑡, 𝑇)𝑑𝑀

∞

−∞

 

=
 𝐽′(𝑣+𝑖𝛼,𝑡,𝑇)

𝛼−𝑖𝑣
 .                            (32) 
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With 𝛼 > 1, we have the EEP 

𝐸𝐸𝑃𝑡_𝑇(𝑘𝑡_𝑇
∗ ) = 𝑟𝐾

𝑒
𝛼𝑘𝑡_𝑇
∗

2𝜋
∫ 𝑒−𝑖𝑣𝑘𝑡_𝑇

∗
𝜓′(𝑣, 𝑡, 𝑇)𝑑𝑣

∞

−∞
,                 (33) 

With 𝛼 > 1, the approximation for EEP in Eq. (33) using FFT is given by 

𝐸𝐸𝑃𝑡_𝑇(𝑘𝑢) 

= 𝑟𝐾
𝑒𝑥𝑝(α̂𝑘𝑢)

𝜋
∑ 𝑒−𝑖

2𝜋

𝑀
(𝑗−1)(𝑢−1)𝑒𝑖𝑏𝑣𝑗𝜓′(𝑣𝑗 , 𝑡, 𝑇)

𝜉

3
[3 + (−1)𝑗 − 𝜚𝑗−1]

𝑀
𝑗=1 ,   (34) 

where 𝑣𝑗 = 𝜉(𝑗 − 1) , 𝑘𝑢 = −𝑏 + 𝜆(𝑢 − 1)  for 𝑢 = 1, 2,⋯ ,𝑀 , 𝑏 = 𝑀𝜆 2⁄ , λξ =

2𝜋 𝑀⁄ , and 𝜚𝑛 is the Kronecker delta function that is unity for 𝑛 = 0 and zero 

otherwise. 

For instance, in the case of two early exercise time points, Eq. (21) can be 

rewritten into 

𝐸𝐸𝑃0_𝑇
2 = 𝑟𝐾∫ 𝑒−𝑟(𝑠−0) {∫

1

2𝜋
(∫ 𝑒−𝑖𝑣𝑍𝑠𝑒𝑖𝑣𝑍0𝐻𝑁𝑠𝑑𝑣)

∞

−∞

𝑑𝑍𝑠

𝑘𝑠
∗

−∞

} 𝑑𝑠
𝑇 2⁄

0

 

+𝑟𝐾∫ 𝑒−𝑟(𝑠−0) {∫
1

2𝜋
(∫ 𝑒−𝑖𝑣𝑍𝑠𝑒𝑖𝑣𝑍0𝐻𝑁𝑠𝑑𝑣)

∞

−∞

𝑑𝑍𝑠

𝑘𝑠
∗

−∞

} 𝑑𝑠
𝑇

𝑇 2⁄

 

= 𝑟𝐾∫ 𝑒−𝑟(𝑠1−0) {∫
1

2𝜋
(∫ 𝑒−𝑖𝑣𝑍𝑠1𝑒𝑖𝑣𝑍0𝐻𝑁𝑠1𝑑𝑣)

∞

−∞

𝑑𝑍𝑠1

𝑘𝑠1
∗

−∞

} 𝑑𝑠1

𝑇 2⁄

0

 

+𝑟𝐾 ∫ 𝑒−𝑟(𝑠2−0) {∫
1

2𝜋
(∫ 𝑒−𝑖𝑣𝑍𝑠2𝑒𝑖𝑣𝑍0𝐻𝑁𝑠2𝑑𝑣)

∞

−∞
𝑑𝑍𝑠2

𝑘𝑠2
∗

−∞
} 𝑑𝑠2

𝑇

𝑇 2⁄
.    (35) 

After setting 𝑘𝑠1
∗ = 𝑘0_𝑇 2⁄

∗  (a constant number), 𝑘𝑠2
∗ = 𝑘𝑇 2⁄ _𝑇

∗  (a constant number), 

𝑍𝑠1 = 𝑀1, 𝑍𝑠2 = 𝑀2, and changing the integral order in Eq. (37), we have: 

𝐸𝐸𝑃0_𝑇
2 =  𝑟𝐾∫

1

2𝜋
∫ 𝑒−𝑖𝑣𝑀1𝑒𝑖𝑣𝑍0 {∫ 𝑒−𝑟(𝑠1−0)𝐻𝑁𝑠1𝑑𝑠1

𝑇 2⁄

0

} 𝑑𝑣
∞

−∞

𝑑𝑀1

𝑘0_𝑇 2⁄
∗

−∞

 

+ 𝑟𝐾 ∫
1

2𝜋
∫ 𝑒−𝑖𝑣𝑀2𝑒𝑖𝑣𝑍0 {∫ 𝑒−𝑟(𝑠2−0)𝐻𝑁𝑠2𝑑𝑠2

𝑇

𝑇 2⁄
} 𝑑𝑣

∞

−∞
𝑑𝑀2

𝑘𝑇 2⁄ _𝑇
∗

−∞
,     (36) 

where 𝑘𝑇 2⁄ _𝑇
∗ = 𝐾 and 𝑘0_𝑇 2⁄

∗  can be pinned down by 

𝐾 − 𝑒𝑘0_𝑇 2⁄
∗

= 𝑃𝐸(𝑒
𝑘0_𝑇 2⁄
∗

, 𝑇 2⁄ ) 
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+𝑟𝐾 ∫ 𝑒−𝑟(𝑠−𝑇 2⁄ ) {∫ 𝜙(𝑒𝑘0_𝑇 2⁄
∗

, 𝑆𝑠, 𝑠 − 𝑇 2⁄ )𝑑𝑆𝑠
𝑒
𝑘𝑇 2⁄ _𝑇
∗

0
}

𝑇

𝑇 2⁄
𝑑𝑠.      (37) 

Having 𝑘0_𝑇 2⁄
∗  and 𝑘𝑇 2⁄ _𝑇

∗  makes EEP in Eq. (36) can calculated by Eq. (34) 

with (𝑘𝑡_𝑇
∗ , 𝑡, 𝑇) = (𝑘0_𝑇 2⁄

∗ , 0, 𝑇 2⁄ ) and (𝑘𝑡_𝑇
∗ , 𝑡, 𝑇) = (𝑘𝑇 2⁄ _𝑇

∗ , 𝑇 2⁄ , 𝑇). In the case 

of three early exercise time points, Eq. (21) can be rewritten into a similar formula 

𝐸𝐸𝑃0_𝑇
3 =  𝑟𝐾∫

1

2𝜋
∫ 𝑒−𝑖𝑣𝑀1𝑒𝑖𝑣𝑍0 {∫ 𝑒−𝑟(𝑠1−0)𝐻𝑁𝑠1𝑑𝑠1

𝑇 3⁄

0

} 𝑑𝑣
∞

−∞

𝑑𝑀1

𝑘0_𝑇 3⁄
∗

−∞

 

+ 𝑟𝐾 ∫
1

2𝜋
∫ 𝑒−𝑖𝑣𝑀2𝑒𝑖𝑣𝑍0 {∫ 𝑒−𝑟(𝑠2−0)𝐻𝑁𝑠2𝑑𝑠2

2𝑇 3⁄

𝑇 3⁄
} 𝑑𝑣

∞

−∞
𝑑𝑀2

𝑘𝑇 3⁄ _2𝑇 3⁄
∗

−∞
 

+ 𝑟𝐾 ∫
1

2𝜋
∫ 𝑒−𝑖𝑣𝑀3𝑒𝑖𝑣𝑍0 {∫ 𝑒−𝑟(𝑠2−0)𝐻𝑁𝑠3𝑑𝑠3

𝑇

2𝑇 3⁄
} 𝑑𝑣

∞

−∞
𝑑𝑀3

𝑘2𝑇 3⁄ _𝑇
∗

−∞
,     (38) 

where 𝑘2𝑇 3⁄ _𝑇
∗ = 𝐾. In addition, 𝑘𝑇 3⁄ _2𝑇 3⁄

∗  can be pinned down at time 2𝑇 3⁄  by 

𝐾 − 𝑒𝑘𝑇 3⁄ _2𝑇 3⁄
∗

= 𝑃𝐸(𝑒
𝑘𝑇 3⁄ _2𝑇 3⁄
∗

, 2𝑇 3⁄ ) 

+𝑟𝐾 ∫ 𝑒−𝑟(𝑠−2𝑇 3⁄ ) {∫ 𝜙(𝑒𝑘𝑇 3⁄ _2𝑇 3⁄
∗

, 𝑆𝑠, 𝑠 − 2𝑇 3⁄ )𝑑𝑆𝑠
𝑒
𝑘2𝑇 3⁄ _𝑇
∗

0
}

𝑇

2𝑇 3⁄
𝑑𝑠,      (39) 

and then 𝑘0_𝑇 3⁄
∗  can be pinned down at time 𝑇 3⁄  by 

𝐾 − 𝑒𝑘0_𝑇 3⁄
∗

= 𝑃𝐸(𝑒
𝑘0_𝑇 3⁄
∗

, 𝑇 3⁄ ) 

+𝑟𝐾∫ 𝑒−𝑟(𝑠−𝑇 3⁄ ) {∫ 𝜙(𝑒𝑘0_𝑇 3⁄
∗

, 𝑆𝑠, 𝑠 − 𝑇 3⁄ )𝑑𝑆𝑠

𝑒
𝑘𝑇 3⁄ _2𝑇 3⁄
∗

0

}
2𝑇 3⁄

𝑇 3⁄

𝑑𝑠 

+𝑟𝐾 ∫ 𝑒−𝑟(𝑠−𝑇 3⁄ ) {∫ 𝜙(𝑒𝑘0_𝑇 3⁄
∗

, 𝑆𝑠, 𝑠 − 𝑇 3⁄ )𝑑𝑆𝑠
𝑒
𝑘2𝑇 3⁄ _𝑇
∗

0
}

𝑇

2𝑇 3⁄
𝑑𝑠.      (40) 

Having 𝑘0_𝑇 3⁄
∗ , 𝑘𝑇 3⁄ _2𝑇 3⁄

∗ , and 𝑘2𝑇 3⁄ _𝑇
∗  makes EEP in Eq. (38) can calculated by Eq. 

(34) with (𝑘𝑡_𝑇
∗ , 𝑡, 𝑇) = (𝑘0_𝑇 3⁄

∗ , 0, 𝑇 3⁄ ), (𝑘𝑡_𝑇
∗ , 𝑡, 𝑇) = (𝑘𝑇 3⁄ _2𝑇 3⁄

∗ , 𝑇 3⁄ , 2𝑇 3⁄ ) and 

(𝑘𝑡_𝑇
∗ , 𝑡, 𝑇) = (𝑘2𝑇 3⁄ _𝑇

∗ , 2𝑇 3⁄ , 𝑇). 
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    Given 𝐸𝐸𝑃0_𝑇
2  and 𝐸𝐸𝑃0_𝑇

3 , we have 𝑃1 = 𝑃𝐸(𝑆0, 0), 𝑃2 = 𝑃𝐸(𝑆0, 0) + 𝐸𝐸𝑃0_𝑇
2 , 

𝑃3 = 𝑃𝐸(𝑆0, 0) + 𝐸𝐸𝑃0_𝑇
3  and the three-point Richardson extrapolation for the 

American put option could be expressed as Eq. (3).  

 

III. Numerical Results and Findings 

3.1 Numerical results 

In this section, we discuss the influence of early exercise in daily price limit markets 

by comparing the results of the proposed numerical solutions with simulations. Table 

1 shows the solutions of Guo and Chang (2020) (denoted by GC) and our proposed 

three-point Richardson extrapolation solutions of the Chang et al. (2016) framework 

(denoted by RE) are consistent with the results of Monte Carlo simulations (denoted 

by MC) for European options and those of the least square Monte Carlo simulations 

(denoted by LSMC) for American options on stocks without dividends in daily price 

limit markets.4 The differences between the analytic solutions and MC are quite small. 

As for the computation time in the framework of Chang et al. (2016), our extended 

solution seems not to increase with the time to maturity. Our method has a great 

advantage in time consumption. For example, Table 1 shows that the computation 

time of our numerical solution is much less than the MC and LSMC. The computation 

 
4 According to Hull (2000), American calls on stocks without dividends have no 

reason to be early exercised and could be treated as European ones. 
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time of our solution may consume more time for American put options, but it seems 

not to increase with the time to maturity and is apparently between six and seven 

seconds. However, the computation time of LSMC often quickly increases as the time 

to maturity increases. The comparison of the computation time of these two methods 

shows that the Richardson extrapolation is quite accurate and effective for the EEP in 

markets with daily price limits. 

 

3.2 Sensitive Analysis and Findings 

Figure 1 shows the relationship between daily price limits (𝛾) and early exercise 

boundaries of put options on stocks without dividends. A more restrictive daily price 

limit seems to incur an earlier exercise boundary. However, when the daily price limit 

is 10% or greater, there seems to be little difference between early exercise 

boundaries.   

  

IV. Conclusion 

In the valuation of American options, the derivation of the early exercise boundary 

often involves a recursive and numerical computation and poses practical problems. 

We find that the three-point Richardson extrapolation improves the computation 

efficiency of the EEP and extends this new efficient scheme to pricing options on 
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stocks in markets with daily price limits. To the best of our knowledge, no study has 

yet applied this methodology for equity options on stocks in markets with daily price 

limits.  

We first extend the intraday density function of Guo and Chang (2020) to a 

multi-day density function for stocks in markets with daily price limits. Then, we 

apply our multi-day density function in the framework of Kim (1990) and Chang et al. 

(2016) to value American options on stocks without dividends. Moreover, we build an 

efficient formula and take advantage of FFT to quickly calculate the EEP in markets 

with daily price limits. We also adopt the three-point Richardson extrapolation to 

accelerate the computation of American options. The accuracy of our proposed 

method is further verified by simulations. We also note that more restrictive daily 

price limits could force put options to be exercised earlier. The lower limit could be 

the primary factor affecting the early exercise boundary for American puts. 
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Table 1. Options on Stocks without Dividends in Markets with Daily Price Limits 

Model parameter specifications: r=1%, K=100, σ =70%, daily price limit 𝛾=10%, T measured in days, and computation time measured in 

seconds. GC denotes the solution of Guo and Chang (2020). We set ξ=0.1702, 𝛼̂ =1.1 and use 4096 points in the quadrature. MC denotes the 

Monte Carlo simulation, which has 100,000 paths and 100 time steps in one day. Numbers in brackets denote standard deviations of MC. The 

absolute value of the different between GC and MC divided by MC is denoted by Diff. RE denotes our proposed three-point Richardson 

extrapolation solutions of the Chang et al. (2016) framework. LSMC denotes the least square Monte Carlo simulation, which has 100,000 paths 

and 100 time steps in one day. Numbers in brackets denote the standard deviations of LSMC. The absolute value of the difference between RE 

and LSMC divided by LSMC is denoted by Diff. 

  European Call European Put American Put 

S0 T GC Time MC Time Diff GC Time MC Time Diff RE Time LSMC Time Diff 

90 6 0.88 0.06 0.88(0.007) 3.10 0.52% 10.86 0.06 10.88(0.005) 3.10 0.15% 10.88 7.14 10.86(0.013) 195.24 0.23% 

 12 2.09 0.06 2.09(0.018) 6.63 0.08% 12.04 0.06 12.08(0.011) 6.63 0.31% 12.06 6.36 12.05(0.017) 684.57 0.07% 

 24 4.11 0.06 4.10(0.015) 16.73 0.30% 14.02 0.06 14.08(0.007) 16.72 0.43% 14.10 7.45 14.04(0.026) 2945.67 0.46% 

100 6 4.30 0.04 4.29(0.012) 3.03 0.23% 4.28 0.04 4.29(0.011) 3.03 0.32% 4.30 6.99 4.28(0.008) 189.60 0.45% 

 12 6.08 0.04 6.06(0.021) 6.61 0.34% 6.04 0.04 6.06(0.015) 6.61 0.43% 6.05 6.34 6.05(0.011) 686.61 0.01% 

 24 8.60 0.04 8.56(0.026) 16.32 0.47% 8.51 0.04 8.56(0.017) 16.31 0.63% 8.59 7.45 8.54(0.014) 2934.92 0.64% 

110 6 11.18 0.03 11.17(0.012) 3.04 0.08% 1.16 0.04 1.17(0.008) 3.04 1.21% 1.18 6.98 1.17(0.007) 177.87 1.14% 

 12 12.61 0.03 12.58(0.024) 6.63 0.21% 2.56 0.04 2.58(0.018) 6.63 0.91% 2.57 6.36 2.58(0.015) 643.20 0.32% 

 24 14.92 0.03 14.84(0.052) 16.84 0.49% 4.82 0.04 4.85(0.031) 16.84 0.63% 4.90 7.43 4.84(0.024) 2821.80 1.27% 
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Figure 1. A Sensitive Analysis of Early Exercise Boundaries for Puts on Stocks without Dividends to Daily Price Limits 

 

Model parameter specifications: S0=K=100, r =10%, σ=70%, time to maturity N=96 days, and daily-price limit denoted by 𝛾.  


